
Content beyond boundaries

Evaluation Guide:

and Experience Platforms
ASP.NET Web CMS

4 Key Differences between ASP.NET CMS Platforms...............4

Architecture: Decoupled vs. Tightly Coupled..............................4

Development Model: MVC vs. Web Forms....................................6

Structured Content vs. Blob Content...7

Database: NoSQL vs. SQL Server...9

Bonus: Don’t Forget the Support Model.....................................10

About Ingeniux ...11

Contents

3	 Ingeniux Evaluation Guide for ASP.NET Web CMS and Experience Platforms

So, it’s time for a new Web Content Management platform
(CMS), and you want it to be ASP.NET-based. There
are significant technology, platform, deployment and
operational differences between the leading ASP.NET
CMS platforms, so how do you know which one is right
for your company?

As you evaluate ASP.NET Web CMS solutions for your
company, it’s important to understand four key differences
and how they impact your online capabilities and web
experience road map.

4	 Ingeniux Evaluation Guide for ASP.NET Web CMS and Experience Platforms

1 Architecture: Decoupled vs.
Tightly Coupled

If you want flexibility in how you build your

front-end or want to leverage the content

management capabilities for external

applications, then you want a CMS with a

decoupled architecture.

With a decoupled architecture, the

application for managing content is

separate from the application delivering

content. The CMS does not dictate the stack,

or set of technologies required to deliver

the content and website, allowing for a

more flexible content delivery model. In a

decoupled architecture model, content can

be delivered anywhere and in any format.

In contrast, in a tightly coupled architecture,

web content, customer data, analytics

data, website presentation, and content

delivery take place in a single database and

application framework. In other words,

content management and content delivery

are the same application.

So why does this matter?

As you build your website, you want to

ensure your content displays correctly on

any device or channel, so a separation of

content from delivery is critical. But you may

also be developing customer-facing web

applications that have content you’d like to

manage in your CMS as well. In this case,

your web application is separate from your

CMS, so you need to know you can manage

content in the CMS and deliver it to the web

application front-end using some type of

content delivery service.

In a tightly coupled architecture, this is

impossible to do without having everything

within the CMS. In other words, you would

need to build your web apps on the CMS

platform using its templates and server

technology.

4 Key Differences Between
ASP.NET CMS Platforms

5	 Ingeniux Evaluation Guide for ASP.NET Web CMS and Experience Platforms

In addition, from an environment

management perspective, you will need

to set up multiple instances of your CMS

(application and database) for development,

staging, and production, requiring

replication services to move application and

content changes between environments.

This model typically requires additional

licenses for both the CMS and the database

and can be challenging to manage.

In a CMS with a decoupled architecture, you

can set up multiple deployment options

based on your specific needs. These include:

•	 Dynamic delivery using ASP.NET

•	 Multi-format delivery using mixed or

different server technologies

•	 Web Services delivery using a REST or

SOAP-based API

•	 Device targeted delivery using a mobile

detection system

•	 Push-based delivery such as XML, JSON,

or into an external database where it is

consumed by a remote application

•	 Plain old HTML delivery for static web

content.

Your environment is easier to manage

as well with a decoupled architecture.

Publishing targets configured within the

CMS deploy content to end-points such

as staging or production web services.

Bi-directional syncing keeps information

up-to-date and repository services manage

versions for each publishing target. This

provides a very light application footprint

for content delivery.

A decoupled architecture is also much

easier to scale. With decoupled you can

easily deploy to public clouds, content

delivery networks, or platform-as-a-service

solutions such as Microsoft Azure websites

that provide built-in auto scaling. And

because a decoupled CMS does not require

a database on the web server, it is much

faster, immune from SQL injection and

other denial of service threats.

6	 Ingeniux Evaluation Guide for ASP.NET Web CMS and Experience Platforms

2 Development Model:
MVC vs. Web Forms

Let’s talk about how your developers code

your front-end experience by examining

the two typical approaches in ASP.NET: Web

Forms and MVC.

ASP.NET Web Forms is the traditional

development model for ASP.NET.

Microsoft created Web Forms to help

developers more familiar with client server

development (e.g., WinForms) quickly

migrate to building web pages through a

visual RAD interface.

The problem with Web Forms is that it

supports a tightly coupled architecture,

one where the interface is integrated with

the application functionality (code behind).

This means the application code and the

interface are not easily reusable. With Web

Forms, you are also locked into the controls

available for the CMS platform, dependent

on their quality, upgrade cycle and HTML

output standards, or you must spend a lot

of time creating your own customizations

that then require maintenance.

MVC (model view controller) provides

a different architectural pattern for

development. MVC is the more modern

approach to ASP.NET development and is

the future of ASP.NET with full support from

Microsoft.

With MVC there is a clear separation

of presentation from application logic,

enabling the reuse of both. With MVC, a

request is first sent to the Controller which

then decides which Model (application logic/

validations) and UI (View) to put together to

create the appropriate front-end interface.

Another difference between Web Forms

and MVC is that you can use Microsoft Web

Pages (Razor) in MVC. Razor is a lightweight

view engine that Microsoft recommends

you use. With Web Forms, your only

template option is via an aspx page.

You can see the importance of an MVC

development model if you need to support

cross channel, multi-device websites and

web applications. Using MVC, you can create

7	 Ingeniux Evaluation Guide for ASP.NET Web CMS and Experience Platforms

multiple interfaces, and MVC knows which

one to use based on the initiating request.

In the case of Web Forms, you must build

all your different interfaces and supporting

application code separately. If all your

CMS supports is Web Forms then you also

have no way to send content to external

applications - all your web apps need to be

built directly on the CMS.

Finally, you want to make sure that if the

CMS comes with a page builder application

(an app that lets you quickly design your

web pages), it supports an MVC model.

Otherwise, any advantages you think you

are getting from the page builder are

quickly lost.

3 Structured Content vs. Blob Content

In a multichannel, multi-device world, the

ability to reuse content is critical. Content

reuse takes a variety of forms. It could

be the updating of content on multiple

websites or mobile devices, supporting

multilingual requirements, or it could

involve content for both digital and print.

The idea of creating and managing separate

versions of content for each channel/device

is wasted time and effort.

To reuse content, you must structure it. Also

known as intelligent content, structured

content simply means content is stored in a

way that defines and describes it.

The opposite end of structured content is

Blob (binary large object) content. Many

CMS platforms continue to store content

in Blob format. Essentially, you have this

large WYSIWYG editing environment

where you write the entire content of

your page, including images, multimedia

and maybe some documents, and it’s all

stored as a Blob in the database. How do

you know what this content is? How do

you pull it apart to display it differently for

mobile versus the website? How do you

automatically resize images for mobile? The

questions are enormous, and the answer is:

you can’t.

8	 Ingeniux Evaluation Guide for ASP.NET Web CMS and Experience Platforms

Traditional Web content like what we’ve

described above is HTML and only describes

what the content looks like. Structured

(intelligent) content is XML, JSON (Java Script

Object Notation), or XHTML with additional

tag sets that describe what the content

means.

Structuring intelligent content requires

using human readable tags that applications

also understand and know how to process.

You typically apply business logic to content

processing at the presentation layer. For

instance, a style sheet or ASP.NET view

would know how to present a <Title> tag as

an H1 for a web page; and how to apply a

separate set of mark up for a print doc or

specific mobile device.

You can also apply logic to structured

content at the application layer. Render

content dynamically using audience

segments, visitor behavior, device types,

business rules, and other factors. In

this case, structured content supports

personalization across multiple channels.

What does this mean for your selection

of a CMS? Many CMS platforms continue

to store content in Blob format. Others

offer a combination of both. But if you

really care about structured content (and

you should if you want to create the best

customer experience without a huge

amount of wasted effort), you will want a

CMS that creates your content using an XML

schema and stores the content using a very

granular set of tags, content, and meta data.

Moreover, content should be fully separated

from the presentation, use taxonomy or

categories to define topics, and chunk the

content either in elements (structure within

a page) or components (XML fragments you

assemble to create a dynamic page).

9	 Ingeniux Evaluation Guide for ASP.NET Web CMS and Experience Platforms

Nearly all ASP.NET CMS platforms use

Microsoft SQL Server for a database engine.

In some cases, they might use Oracle or

MySQL. These are relational database

platforms that store web content, customer

data and analytics data using a standard

model and schema. In a relational database,

content is typically stored as Blobs.

In an agile decoupled content management

and deployment model, a relational

database presents challenges. A Blob does

not provide the structured (or intelligent)

content model needed. What’s required is

a flexible content or data model, offering a

richer content structure, and that’s where

NoSQL can help.

NoSQL databases – also described as “not

only SQL” - are schema free, meaning

content can have any structure and that

structure can change over time. In NoSQL,

content is stored as documents or JSON

objects that have rich metadata and use

search-based indexing allowing content

to be easily queried and retrieved using

metadata.

There are many advantages to a NoSQL

database for content management. NoSQL

is:

•	 Designed to manage content and

provide a much more intelligent content

model for storage and reuse.

•	 Schema-free so content definitions can

change without database upgrades or

“joins.”

•	 Less expensive and easier to

administrate.

•	 Easier to cluster, scale and

geographically distribute through the

provision of automatic “sharding” of

information.

•	 Built for cloud-based deployments.

4 .Database: NoSQL vs. SQL Server

10	 Ingeniux Evaluation Guide for ASP.NET Web CMS and Experience Platforms

Bonus: Don’t Forget the Support Model

When companies are looking for a new

CMS, the technology always seems to take

precedence. But there’s something else that

is very important and deserves more than a

simple check mark and cursory response on

an RFP form: the Support Model.

Building a new website or web application

takes a lot of work, and it’s fraught with

challenges. Yes, you will have issues, and

you will need your CMS provider to help

you. Hence the support they provide.

But all support models are not alike. While

many may tout a platform that is agile, they

don’t also provide agile support. When you

are under the gun and need to get help,

you don’t have time to look at how many

incidents you are allowed, or if you’ve used

up all the critical, or priority, tickets. And

there will be times when you want a real

voice on the phone.

Be very careful to understand the support

model a CMS provider offers and if it meets

your needs. A new team will need more

support than normal. A team working with

a very new development approach (maybe

you are switching from Web Forms to MVC)

will require more support. If you are moving

to structured content and struggling to

figure out how to implement your content

model in your CMS, you’ll need support.

There is a wide range of reasons you’ll

want quick and easy access to your CMS

provider’s support team. Ask about

turnaround times, number of priority tickets

allowed, and access to phone support,

community forums, and more.

If content is critical to your business, you

want to have an unlimited technical support

plan with both phone and online service,

a Service Level Agreement (SLA) with

guaranteed response times (ideally one

hour or less for critical issues), and access to

developer support. If you are using a hosted

or SaaS solution, it is essential to have 24/7

support and monitoring.

1601 2nd Avenue, Suite 1010

Seattle, WA 98101

info@ingeniux.com

877 445 8228

About Ingeniux
Ingeniux is the leading provider of web content management and digital experience

software. We enable organizations to orchestrate the entire customer experience from

acquisition through to sales to support and service, across any device, application, or

website.

We build content management software with an unparalleled focus on the content

itself. The Ingeniux CMS is designed to manage and deliver modern websites, customer

support portals, online communities, and other customer touchpoints.

We believe in intelligent “structured” content. We design our software to enable content

reuse, enable true mobile and multi-channel content delivery, and insightful content

discovery. Our unique content-as-a-service capabilities deliver content into web and

mobile applications, and other key channels.

Ingeniux software is available as a fully managed software service or an on-premise

application. Ingeniux delivers unparalleled service and support to customers worldwide.

To learn more, visit us at http://www.ingeniux.com.

