
Content beyond boundaries

Content-as-a-Service
The Definitive Guide to 



What is Content-as-a-Service .............................................................4

CMS Applications that Support Content-as-a-Service ...........5

Common Use Cases for CaaS ..............................................................7

What are the Options for  
Content-as-a-Service ...........................................................................10

Key CMS Features Required to Support  
Content-as-a-Service  ..........................................................................12

Conclusion ................................................................................................15

Contents



3 Ingeniux  |  The Definitive Guide to Content-as-a-Service

Digital content has grown well beyond the bounds of 
traditional websites. From new front end development 
frameworks like Angular JS, Ember, and React, to mobile 
applications, Internet of Things, print, and other channels, 
you need to empower business users to manage content 
beyond traditional websites. 

The challenge is that most Web CMS software is not 
designed to support Web and Mobile applications. A 
traditional CMS assumes that all of the pages or screens 
are built and managed in the CMS. This assumption is a 
non-starter for most organizations. Applications are built 
with custom code, require build and deploy processes, 
and need to be managed in existing source code control 
and development operations systems. 

It’s an evolution from content that was presentation 
and interaction-oriented to smarter content creation 
regardless of channel, device, context, etc. It’s about 
proper governance and orchestration of content, and 
decoupling presentation from management.



4 Ingeniux  |  The Definitive Guide to Content-as-a-Service

What is Content-as-a-Service

Content-as-a-Service, or simply CaaS, is a strategy for delivering CMS managed 
content to Web applications and other channels.

With CaaS you can manage and edit your 

content in a CMS. When the content is 

ready, it can be pushed as a resource file 

into an external application, or the 

application can request content 

using an API-based web service.

Adding content management to 

your applications empowers your 

business and marketing teams to update 

in-app content easily, translate content into 

multiple languages, personalize content 

based on business rules or audience, or 

enable self-service for third-party customers 

of your applications. 

Content-as-a-Service delivers clear 

business value and is a key strategy to 

align marketing and IT programs. As such, 

CaaS is a very popular approach today. 

However, there is a lot of confusion around 

content-as-a-service. From “headless” CMS 

solutions to decoupled or loosely coupled 

CMS solutions, there are a wide range of 

approaches to support CaaS, with benefits 

and liabilities for each.

Content-as-a-Service delivers clear business value and is a 

key strategy to align marketing and IT programs. 



5 Ingeniux  |  The Definitive Guide to Content-as-a-Service

CMS Applications that Support 
Content-as-a-Service

The content management systems market 

is very diverse, with a wide range of 

solutions from large web experience suites 

to basic blogging applications. Clearly, not 

all CMS software is the same, and most 

CMS software is not designed to support 

content-as-a-service. 

The primary types of CMS applications 

designed for content-as-a-service are the 

headless CMS and the decoupled or loosely 

coupled CMS. We will look at the definition 

of those terms, but the main point is 

understanding how a CMS application 

supports content delivery. 

Headless CMS
A headless CMS has the singular focus 

of enabling the creation and basic 

management of content and the delivery of 

that content to external publishing channels 

typically via a RESTful API. The “headless 

CMS” only provides the backend content 

management capabilities; any formatting of 

the presentation of that content takes place 

on the front-end delivery tier and is not tied 

to the CMS in any way. 

It’s a simple model that works for 

publishers, designers and developers 

of highly customized websites or web 

applications, mobile applications or for 

highly customized website layouts that a 

traditional or “tightly coupled” CMS can’t 

support. Headless is also an option for 

developers who use new JavaScript MVC 

frameworks such as AngularJS and React. 

Decoupled CMS
A decoupled CMS provides the content 

management capabilities of a full CMS 

application, but with the flexibility of 

headless CMS. The term decoupled simply 

means that the content management 

application is physically separated from the 

content delivery environment. A decoupled 

CMS can either deliver content through an 

API or by replicating files to a publishing 

target or remote location. 



6 Ingeniux  |  The Definitive Guide to Content-as-a-Service

A decoupled CMS is a technical architecture 

approach employed by some full CMS 

platforms. These applications provide a 

much deeper set of capabilities compared 

to a basic headless CMS and typically 

support a file-based delivery model as well 

as a content API. 

Loosely Coupled CMS 
Another approach is a loosely coupled 

CMS application. Loosely coupled means 

that the CMS software is separate from 

content delivery, but provides the option 

of a content delivery framework 

or application for rendering 

dynamic content and other 

services. In some cases, a loosely 

coupled content delivery tier 

can be used as middleware for 

supporting content-as-a-service, providing 

less dependency on the CMS software 

and better scaling characteristics, as well 

as supporting the option of on premise 

management. 

CMS Management, 
Delivery Freedom
With headless, decoupled or loosely 

coupled CMS applications, the web 

presentation layer can easily support web 

applications and CMS content without 

complex integration. You can manage 

any and all content for your website and 

business systems in your CMS and deliver it 

on demand to whatever front-end interface 

requests it, whether it’s to a website built 

on top of the CMS platform or a completely 

separate web application. 

With a CaaS delivery model, you do not 

have to make changes to legacy applications 

or data, specific server technology is not 

needed, and your web experience platform 

does not dictate what your “stack” looks 

like. Even better, your customer-facing web 

applications can consume managed content 

to deliver a consistent customer experience 

and content governance process.

Not all CMS software is the same, so it’s important to 

understand if and how your CMS supports content delivery 



7 Ingeniux  |  The Definitive Guide to Content-as-a-Service

Common Use Cases for CaaS

If you are any company doing real business on the web, chances are it’s complex 
and cannot be delivered using a CMS platform alone. When you think about it, 
there are unlimited use cases where the delivery of content as a service works 
very well.  Let’s examine some these.

Native Mobile 
Applications
Native mobile apps are a prime example 

of CaaS in use. Native, or hybrid, mobile 

applications are typically a combination 

of functionality and content. It could be 

an interactive application, a game, a store 

shopping app or something else. 

The content in these mobile applications 

often needs to change frequently (new 

deals, new information, related content 

or product). Leveraging CaaS enables 

developers to update mobile app content 

continually without having to rebuild or 

recompile their applications and go through 

the process of resubmitting them to the 

App Store and forcing updates on mobile 

devices.

Multi-Site/Multilingual 
Websites
Most large enterprises or global 

organizations manage more than one 

website or a single website with multiple 

languages. CaaS is a good approach to 

provide translations to multilingual websites 

or to deliver the same content (in different 

filters or views) to different websites. 

Web Applications
Web applications also benefit from CaaS 

in a few different ways. Web applications 

are designed to provide business services 

– banking and financial applications are 

two great examples. The focus of these 

applications is the functionality they 

provide. But they also offer content that 

needs to be regularly updated. 



8 Ingeniux  |  The Definitive Guide to Content-as-a-Service

Here are a few examples of web applications that would benefit from CaaS.

Embedded Help 

Most applications have help – tips 

embedded within the web pages directly 

and separate help pages, including FAQs, 

recommended content and so on. This 

content can be easily managed within a 

CMS and then fed to the application. If the 

help is personalized or contextual, it’s easier 

to send a request to the CMS and have the 

content quickly curated and sent back. If 

the help is not contextual, maintaining it 

separately in a CMS enables you to update 

it regularly and provide it in different 

languages without having to rebuild the 

application for each content change.

Labeling 

The ability to manage the text of labels in a 

web application is useful, especially when 

your application is available in different 

languages. You can manage the text of the 

labels within a CMS and then feed them into 

the web application based on the language 

selected. 

CTAs in a Shopping Cart 

Some shopping carts offer CTAs (calls 

to action). The CTA may be to look at 

additional products, read reviews on items 

in the shopping cart, or to provide links 

to supporting content that encourages 

the shopper to complete the transaction. 

Manage the content used in these CTAs in 

the CMS and then pull it into the shopping 

cart based on the items the cart contains.

Blogs and Other Supporting 
Content

Many of today’s applications provide a 

range of supporting content in the form 

of blogs, downloadable resources and so 

on. If the web application is completely 

custom built, this content can be managed 

within a CMS and then pulled into the 

application on demand. With major content 

assets, such as a blog, it’s much simpler 

to create a separate publishing target in 

the CMS, but with small content, such as 

marketing text on a page, or widgets that 

offer recommended content or tips, CaaS 

is a useful approach. Organizations can 

keep the content updated and fresh, and 

personalized to the user and their context.



9 Ingeniux  |  The Definitive Guide to Content-as-a-Service

Highly Customized Web 
Layouts
It’s often not easy to implement custom 

layouts using a CMS templating framework 

without a great deal of development effort. 

When the front-end visual design is highly 

customized, it may make more sense to 

create the website structure outside the 

CMS and leverage CaaS to serve its content.

Third Party Content 
Editing
There are occasions when you have an 

application that contains content that 

requires third-party content editors or 

contributors. You want to provide an easy, 

intuitive way for them to contribute the 

required content.

Enabling third-party content 

editing in the CMS allows you 

to follow a strict review and 

approval workflow process 

before you publish the 

contributed content to the 

application or website.

With CaaS, you can ensure a consistent customer experience 

regardless of delivery channel.

Working with Angular 
JS and other JavaScript 
Frameworks
The Content-as-a-service model works 

well for developers building apps using 

modern client-side JavaScript frameworks 

such as AngularJS, Ember, and React. 

Developers can create highly responsive 

web experiences that leverage the content 

management capabilities of the CMS to 

store and manage content. 

For example, with an AngularJS app 

directives (parts of the web page) are 

mapped directly to components managed 

within the CMS back-end. The CMS provides 

a visual representation of the app’s content 

for non-coders so they can easily and 

quickly update content in the web app, such 

as messages, labels or help text.



10 Ingeniux  |  The Definitive Guide to Content-as-a-Service

What are the Options for  
Content-as-a-Service

Content as a Service is not exactly new; some organizations have been 
implementing versions of it for a few years. Here’s a look at three ways you can 
deliver content to an application.

Publishing Resource Files 
Content is stored in resource files written in 

XML, JSON or another proprietary format. 

These resources files are included at the 

application’s run-time, and there is often 

a visual tool for changing the content. 

Publishing resource files is a typical 

approach to managing help content or 

labels, or any content that you don’t need to 

change frequently. It is a limited approach 

however in that it requires the code 

(resource files) to be part of the application 

deployment. When updated, the server 

must be recycled to recognize the changes 

in the resource files.

Resource file publishing should only be 

an option when there is no opportunity to 

change the existing application at all.

File-based Content 
Delivery
When content is stored in files using XML, 

the application is updated to load the files 

like a supporting resource. When loaded in 

this manner, you can update the files and 

have the changes reflected immediately 

without having to recycle the server. 

File-based delivery is a “push” approach to 

delivering content and is often the preferred 

method by many organizations when CaaS 

is used internally. This approach is often 

much better than API deployment (the third 

approach) because it has zero backend 

dependency and better performance 

and scalability. You achieve content 

personalization by structuring the XML 

content with metadata that supports the 

personalization. 



11 Ingeniux  |  The Definitive Guide to Content-as-a-Service

When delivering content via a file-based 

method, you have to pay particular 

attention to timing and caching, as well 

as setting up the proper connections and 

enabling the delivery of files across the 

firewall.

RESTful API
With a RESTful API, you can deliver real-time 

content updates to an application 

or native mobile app. The content 

API is the design approach 

for modern web and mobile 

applications. The application 

requests the content through the 

Content API which in turn pulls 

the right content from the CMS where it is 

managed and stored. 

As with file-based content delivery, the 

API approach enables content editors and 

contributors to create and manage content 

following proper review and approval 

workflows and ensures that only those 

allowed to modify the content can do so 

through the CMS. It also supports the ability 

to deliver personalized, contextual content 

based on the request coming from the 

application. 

The Content API does have disadvantages. 

If there are a lot of API calls you may 

need to increase the amount of servers 

supporting the requests. Also, if a server 

crashes, the API doesn’t work and as a 

result, the application doesn’t work. The API 

method is popular with some CMS vendors 

because it’s easier to scale from a business 

perspective (just add more servers), but it’s 

less flexible than the file-based method in 

terms of deciding when to push out new 

content. If you work with JSON, the content 

API is often a popular approach to CaaS. 

File-based content delivery works well for internal web 

applications, while a content API works best when you need 

to deliver personalized, contextual content.



12 Ingeniux  |  The Definitive Guide to Content-as-a-Service

Key CMS Features Required to 
Support Content-as-a-Service 

Several key components need to be in place in a content management platform 
to deliver Content as a Service.

Structured Content is 
Critical
No CMS CaaS model will work correctly 

without a structured content model. A 

structured content model, also known as an 

intelligent content model, is a way to create 

and manage content completely separate 

from how it is presented in any application 

or website. 

You store structured content in a format 

that both defines it using content types 

and relationships and describes it using 

metadata. This semantic definition enables 

the CMS to adapt the content for multiple 

outputs and formats. 

This approach requires a completely new 

way for many organizations to develop 

content. Typically they think about content 

based on the channel. So, for example, 

when you design a new website, there is 

a content identification and development 

phase; the same approach is followed for 

a web application. In both instances, the 

content is only defined for its use within a 

single channel. 

It’s important to bring the modeling of 

content a step up, outside of its delivery 

to any particular channel. Take some 

time to understand all the content your 

organization creates and manages. Define 

your organization’s taxonomy including 

content types, their relationships, and 

associated metadata. Defining and 

managing content in this manner ensures 

that it can be reused across all your 

channels, both offline and digital. It also 

supports federated and faceted search.

Your CMS must support the ability to 

create and deliver structured content. 

Structured content includes XML, JSON and 

other formats that provide a rich content 

definition.



13 Ingeniux  |  The Definitive Guide to Content-as-a-Service

Creating the Decoupled 
Architecture
In a decoupled architecture the delivery 

tier is completely separate from the 

backend content management system. 

The CMS doesn’t dictate the stack or set 

of technologies required to deliver the 

content or the website/web application. The 

delivery tier can be located on completely 

separate servers and in completely different 

environments, ensuring that your content is 

not accessible before being published.

With a decoupled architecture, you do not 

have the overhead of the CMS application 

on every web server. Because content is not 

delivered from a database in the “run-time” 

environment, it is much more scalable, 

enabling you to deliver content anywhere – 

a website on another service, a cloud-based 

application, a kiosk in a store, or a content 

delivery network (CDN). 

When content is delivered as a web service, 

typically using a RESTful API and JSON or 

XML for file-based, it can also be written 

in a completely different technology from 

the backend CMS. Also, the requesting 

application does not have access to the 

content in the CMS, reducing the number of 

people with direct access to the content and 

the risk of denial of service attacks and SQL 

injections.

Agile Deployment Model
An agile CMS solution offers multiple 

deployment options to fit how the 

organization needs to deliver its content 

now or in the future. These include: 

dynamic delivery using a server technology 

like ASP.NET or Java; multi-format 

delivery using mixed or different server 

technologies; Web services delivery using 

a REST or SOAP-based API; device-targeted 

delivery using a mobile detection system; 

push-based delivery such as XML, JSON 

or into an external database so it can be 

consumed by a remote application; and 

plain old HTML delivery for static Web 

content. All of these deployment models 

can leverage CaaS to request the content 

from the CMS. 

Managing Content 
Permissions
In a pull based API model, the requesting 

delivery tier sends a request to the CMS 

and includes the proper credentials to show 

they can access content. In a push based 

model, only someone with the correct 

permissions on the CMS backend can push 

new or updated content to the delivery tier.

A CMS might manage content for a 

number of applications and websites, so 



14 Ingeniux  |  The Definitive Guide to Content-as-a-Service

it’s important to ensure permissions are 

properly applied for each application.

The CaaS management tier must request 

the credentials of the calling application and 

apply permissions appropriately.

Also, by providing a read-only content API, 

no one can send requests to the CMS to 

modify the content.

Integrating DevOps 
Processes and Builds
As you develop your CaaS CMS model, you 

may slowly update how the content API or 

the file-based delivery works, and like any 

other development process, you want to 

include DevOps processes and builds. 

GitHub and Mercurial are two approaches 

to version control that can help you manage 

the development and continued updates 

of your CaaS delivery models. Both offer 

versioning that enables you to point your 

delivery tiers to different versions of your 

content repository.

Also, when you are building your website, 

native mobile app or web application, 

and you manage development using one 

of these version control repositories you 

can point different versions of your code 

to pull different versions of the content 

API or resource files. In this way, you can 

point applications in development at a 

development version of the content API 

or files, and the production versions of 

your apps at the production version of the 

content API or files. 

Using version control tools you can build a 

branch for each stage of your content API – 

development, staging, master – in the same 

way you create versions of a website or web 

application. 

Remote Preview
One drawback of the content as a service 

model is not being able to preview what 

your content looks like in the delivery tier. 

Because the content is created separately 

in a CMS, there’s often no way to see 

how it will look when it is applied to a 

presentation.

Remote or external preview empowers 

marketing users to make in-context edits 

and view layouts on pages that are not 

entirely managed by the CMS. An agile 

CMS should provide a web services-

based preview system that can emulate 

applications and content in the design-time 

CMS environment.



15 Ingeniux  |  The Definitive Guide to Content-as-a-Service

Conclusion

The only constant on the Internet is change. 

When evaluating a CMS you do not only 

need to plan for the requirements you 

have today, but also for what’s to come. 

While none of us have a crystal ball, it’s 

pretty clear that the changes coming to the 

Internet deal with devices, applications, 

cloud networks, new interfaces like voice 

and touch, and new channels like in-car 

telematics or the Internet-of-things. A CMS 

that supports CaaS will provide the agility 

to meet the challenges of the changing 

Internet. 

The traditional website is still an important 

channel in your web strategy, but it’s no 

longer the only channel. Most organizations 

deal with many delivery channels, from 

websites to key web applications to mobile 

and enterprise portals. Often you use the 

same content in more than one of these 

channels, so it’s critical to ensure that 

content updates are applied consistently 

across channels. The ability to support 

content-as-a-service should be part of any 

modern Web CMS evaluation, whether CaaS 

is the primary deployment strategy or a 

capability you will need to support future 

projects. 

Content-as-a-service will enable your 

organization to move beyond traditional 

Web Content Management and embrace 

the third generation of digital content 

management, delivering engaging customer 

experiences across all channels 

and devices whether managed 

in your CMS, or across external 

applications and networks. 

When applied correctly, CaaS can 

connect and support all of your sites and 

applications with content that is updated, 

governed, and relevant, providing richer 

customer experiences while dramatically 

lowering the time and cost required to 

support digital programs. 

A CMS that supports CaaS provides the agility to meet the 

challenges of the changing Internet. 



1601 2nd Avenue, Suite 1010

Seattle, WA 98101

info@ingeniux.com

877 445 8228

About Ingeniux 
Ingeniux is the leading provider of web content management and digital experience software. 

We enable organizations to orchestrate the entire customer experience from acquisition 

through to sales to support and service, across any device, application, or website.  

We build content management software with an unparalleled focus on the content itself. The 

Ingeniux CMS is designed to manage and deliver modern websites, customer support portals, 

online communities, and other customer touchpoints.  

We believe in intelligent “structured” content. We design our software to enable content reuse, 

enable true mobile and multi-channel content delivery, and insightful content discovery. Our 

unique content-as-a-service capabilities deliver content into web and mobile applications, and 

other key channels.  

Ingeniux software is available as a fully managed software service or an on premise application. 

Ingeniux delivers unparalleled service and support to customers worldwide.  

To learn more, visit us at http://www.ingeniux.com. 


	What is Content-as-a-Service
	CMS Applications that Support Content-as-a-Service
	Common Use Cases for CaaS
	What are the Options for 
Content-as-a-Service
	Key CMS Features Required to Support Content-as-a-Service 
	Conclusion




